

Contents lists available at ScienceDirect

Global and Planetary Change

journal homepage: www.elsevier.com/locate/gloplacha

Review paper

Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean

Bernd R. Schöne *

Earth System Science Research Center, Institute of Geosciences, University of Mainz, Johann-Joachim-Becherweg 21, 55128 Mainz, Germany

ARTICLE INFO

Article history: Received 30 March 2013 Received in revised form 19 September 2013 Accepted 23 September 2013 Available online 30 September 2013

Keywords: bivalve sclerochronology master chronology paleoclimate dynamics paleoseasonality Holocene

ABSTRACT

High-resolution environmental proxy data from the extratropical North Atlantic prior to the instrumental era are of critical importance to decipher processes and mechanisms of global change. In this regard, shells of the extremely long-lived bivalve mollusc, *Arctica islandica* (Linnaeus, 1767), have gained particular attention during the last decade because they serve as reliable, subseasonally resolved multi-proxy archives of environmental variability in that very region. With a lifespan of more than 500 years, *A. islandica* is the longest-lived solitary animal. Its shell grows periodically throughout life and contains distinct annual and daily growth increments. These growth patterns function as a calendar that can be used to place each shell portion into a precise temporal context. Furthermore, changing environmental conditions are encoded in the shells in the form of variable increment widths and geochemical properties. By means of cross-dating, growth increment width chronologies from different specimens can be combined into much longer time-series, so-called composite or master chronologies, covering centuries to millennia and many generations of bivalves.

The present paper provides a comprehensive review of research on this species with a special focus on long-term climate and environmental reconstructions using isotopes, trace and minor elements and variations in shell growth. This review also highlights challenges involved with the interpretation of proxy data obtained from *A. islandica* and identifies future research needs. *A. islandica* does not easily reveal its secrets. It needs a holistic approach to unlock the multi-proxy records stored in their shells. The goal of this paper is to increase the recognition of this high-potential natural archive and encourage future interdisciplinary research

© 2013 Elsevier B.V. All rights reserved.

Contents

1.	Introd	luction	10
2.	Proces	sses, timing and rate of shell formation	11
	2.1.	General information about A. islandica	11
	2.2.	Shell structures and biomineralization processes	12
	2.3.	Growth patterns and crystal fabrics	14
	2.4.	Timing and rate of shell formation: physiology and environment	15
	2.5.	Biological clocks stimulate periodic shell formation	15
3.	Variat	ions of shell growth rate: environment and ontogenetic age	18
	3.1.	Building composite chronologies	18
	3.2.	Extracting environmental signals from composite chronologies	19
4.	Maste	er chronologies: increment widths and paleoclimate variability	1
	4.1.	Spatial coherence	1
	4.2.	Anthropogenic disturbances	1
	4.3.	Past ocean dynamics	2
	4.4	Floating chronologies and single valves: climate windows 21	2

^{*} Tel.: +49 6131 39 24757; fax: +49 6131 39 24768. E-mail address: schoeneb@uni-mainz.de.